Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Ting-Yu | en_US |
dc.contributor.author | Tsai, Shi-Chun | en_US |
dc.contributor.author | Tsai, Wen-Nung | en_US |
dc.contributor.author | Tsay, Jong-Chuang | en_US |
dc.date.accessioned | 2014-12-08T15:33:54Z | - |
dc.date.available | 2014-12-08T15:33:54Z | - |
dc.date.issued | 2014-01-10 | en_US |
dc.identifier.issn | 0166-218X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.dam.2013.08.013 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/23375 | - |
dc.description.abstract | Consider a line of n nickels and n pennies with all nickels arranged to the left of all pennies, where n >= 3. The puzzle asks the player to rearrange the coins such that nickels and pennies alternate in the line. In each move, the player is allowed to slide k adjacent coins to hew positions without rotating. We first prove that for any integer k >= 2 it takes at least n moves to achieve the goal. A well-known optimal solution for the case k = 2 matches the lower bound. We also give optimal solutions for the case k = 3. (C) 2013 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Combinatorial games | en_US |
dc.subject | Puzzles | en_US |
dc.subject | Algorithms | en_US |
dc.title | More on the one-dimensional sliding-coin puzzle | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.dam.2013.08.013 | en_US |
dc.identifier.journal | DISCRETE APPLIED MATHEMATICS | en_US |
dc.citation.volume | 162 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 32 | en_US |
dc.citation.epage | 41 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000328311400004 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.