Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Ting-Yuen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.contributor.authorTsai, Wen-Nungen_US
dc.contributor.authorTsay, Jong-Chuangen_US
dc.date.accessioned2014-12-08T15:33:54Z-
dc.date.available2014-12-08T15:33:54Z-
dc.date.issued2014-01-10en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.dam.2013.08.013en_US
dc.identifier.urihttp://hdl.handle.net/11536/23375-
dc.description.abstractConsider a line of n nickels and n pennies with all nickels arranged to the left of all pennies, where n >= 3. The puzzle asks the player to rearrange the coins such that nickels and pennies alternate in the line. In each move, the player is allowed to slide k adjacent coins to hew positions without rotating. We first prove that for any integer k >= 2 it takes at least n moves to achieve the goal. A well-known optimal solution for the case k = 2 matches the lower bound. We also give optimal solutions for the case k = 3. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectCombinatorial gamesen_US
dc.subjectPuzzlesen_US
dc.subjectAlgorithmsen_US
dc.titleMore on the one-dimensional sliding-coin puzzleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2013.08.013en_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume162en_US
dc.citation.issueen_US
dc.citation.spage32en_US
dc.citation.epage41en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000328311400004-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000328311400004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.