Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorProdinger, Helmuten_US
dc.date.accessioned2014-12-08T15:34:10Z-
dc.date.available2014-12-08T15:34:10Z-
dc.date.issued2013-11-15en_US
dc.identifier.issn0019-3577en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.indag.2012.11.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/23458-
dc.description.abstractWords where each new letter (natural number) can never be too large, compared to the ones that were seen already, are enumerated. The letters follow the geometric distribution. Also, the maximal letter in such words is studied. The asymptotic answers involve small periodic oscillations. The methods include a chain of techniques: exponential generating function, Poisson generating function, Mellin transform, depoissonization. (C) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectRandom wordsen_US
dc.subjectRestricted growth propertyen_US
dc.subjectDepoissonizationen_US
dc.subjectMellin transformen_US
dc.titleWords with a generalized restricted growth propertyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.indag.2012.11.001en_US
dc.identifier.journalINDAGATIONES MATHEMATICAE-NEW SERIESen_US
dc.citation.volume24en_US
dc.citation.issue4en_US
dc.citation.spage1024en_US
dc.citation.epage1033en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000328296600021-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000328296600021.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.