Full metadata record
DC FieldValueLanguage
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorLiu, Pengen_US
dc.date.accessioned2014-12-08T15:34:23Z-
dc.date.available2014-12-08T15:34:23Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4799-0356-6en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/23537-
dc.description.abstractWe present a Bayesian framework to learn prior and posterior distributions for latent variable models. Our goal is to deal with model regularization and achieve desirable prediction using heterogeneous speech data. A variational Bayesian expectation-maximization algorithm is developed to establish a latent variable model based on the exponential family distributions. This algorithm does not only estimate model parameters but also their hyperparameters which reflect the model uncertainties. The uncertainty is compensated to construct a variety of regularized models. We realize this full Bayesian framework for uncertainty decoding of speech signals. Compared to maximum likelihood method and Bayesian approach with heuristically-selected hyperparameters, the proposed method achieves higher speech recognition accuracy especially in case of sparse and noisy training data.en_US
dc.language.isoen_USen_US
dc.subjectBayesian Learningen_US
dc.subjectExponential Familyen_US
dc.subjectLatent Variable Modelen_US
dc.subjectSpeech Recognitionen_US
dc.titleBAYESIAN LATENT VARIABLE MODELS FOR SPEECH RECOGNITIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage7393en_US
dc.citation.epage7397en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000329611507112-
Appears in Collections:Conferences Paper