完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Kuan-Hsien_US
dc.contributor.authorLiang, Tyneen_US
dc.date.accessioned2014-12-08T15:34:48Z-
dc.date.available2014-12-08T15:34:48Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-7695-5137-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/23697-
dc.identifier.urihttp://dx.doi.org/10.1109/SocialCom.2013.59en_US
dc.description.abstractUndoubtedly friendship is one of key factors which keep social networking service users active and the whole community expanding. Hence, predicting friendships becomes an indispensable service provided by the platforms like Plurk, Twitter and Facebook. In this study, an empirical prediction resolution is presented by taking into account the interactions among Plurk users in Taiwan. Both response links and content information extracted from the interaction corpus are used as features in the implementation of the vector space machine based prediction. Experimental results show that the presented approach outperforms those bag-of-word based methods presented in previous studies.en_US
dc.language.isoen_USen_US
dc.subjectsocial networken_US
dc.subjectlink predictionen_US
dc.subjectfriendshipen_US
dc.subjectinteractionen_US
dc.titleFriendship Prediction on Social Network Usersen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/SocialCom.2013.59en_US
dc.identifier.journal2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM)en_US
dc.citation.spage379en_US
dc.citation.epage384en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000330563800054-
顯示於類別:會議論文


文件中的檔案:

  1. 000330563800054.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。