完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Wei-Hao | en_US |
dc.contributor.author | Lu, Yi-Hsuan | en_US |
dc.contributor.author | Hsu, Yung-Jung | en_US |
dc.date.accessioned | 2014-12-08T15:34:56Z | - |
dc.date.available | 2014-12-08T15:34:56Z | - |
dc.date.issued | 2014-03-15 | en_US |
dc.identifier.issn | 0021-9797 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jcis.2013.11.082 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/23755 | - |
dc.description.abstract | With the structural advantages of being sharp and straight, Au nanoplates may work as a promising surface-enhanced Raman scattering (SERS) platform for detection of Raman-sensitive analytes. However, the utilization of Au nanoplates as realistic SERS substrates is still not widely investigated, especially in the practical detection of environmentally persistent pollutants. This work delivers the first successful demonstration of using Au nanoplate platform in practical SERS sensing toward a typical polycyclic aromatic hydrocarbons pollutant of pyrene. The samples were prepared using an environmentally benign seed-mediated growth approach without the post-purification treatment. It was found that Au nanoplates exhibited significantly enhanced SERS activities (enhancement factor = 7.30 x 10(7)) and achieved an extremely low detection limit (5 x 10(-10) M) toward pyrene molecules. Furthermore, the SERS activity of Au nanoplates can be fully recovered after repeatedly used and recycled in pyrene detection. These results manifest that the present Au nanoplates can serve as robust, recyclable SERS substrates that allow rapid detection of trace levels of analytes with a high degree of sensitivity and stability. The findings from this work may facilitate the use of Au nanoplate SERS substrates in more realistic applications such as biomolecule sensing and environmental monitoring. (C) 2013 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Au | en_US |
dc.subject | Nanoplates | en_US |
dc.subject | Seed-mediated growth | en_US |
dc.subject | Surface-enhanced Raman scattering | en_US |
dc.subject | Single molecule detection | en_US |
dc.title | Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jcis.2013.11.082 | en_US |
dc.identifier.journal | JOURNAL OF COLLOID AND INTERFACE SCIENCE | en_US |
dc.citation.volume | 418 | en_US |
dc.citation.issue | en_US | |
dc.citation.spage | 87 | en_US |
dc.citation.epage | 94 | en_US |
dc.contributor.department | 材料科學與工程學系 | zh_TW |
dc.contributor.department | Department of Materials Science and Engineering | en_US |
dc.identifier.wosnumber | WOS:000330748700012 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |