Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lo, Ching-Wen | en_US |
dc.contributor.author | Wang, Chi-Chuan | en_US |
dc.contributor.author | Lu, Ming-Chang | en_US |
dc.date.accessioned | 2014-12-08T15:35:29Z | - |
dc.date.available | 2014-12-08T15:35:29Z | - |
dc.date.issued | 2014-03-01 | en_US |
dc.identifier.issn | 1616-301X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/adfm.201301984 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24014 | - |
dc.description.abstract | Condensation is a common phenomenon and is widely exploited in power generation and refrigeration devices. Although drop-wise condensation offers high heat and mass transfer rates, it is extremely difficult to maintain and control. In this study, the ability to spatially control heterogeneous nucleation on a superhydrophobic surface by manipulating the free energy barrier to nucleation through parameterizing regional roughness scale on the Si nanowire array-coated surface is reported. Water vapor preferentially condenses on the designed microgrooves on the Si nanowire surface and continuous shedding of the drop-wise condensate is observed on the surface. The nucleation site density can also be manipulated by tailoring the density of the microgroove on the surface. Moreover, the cycle time on the Si nanowire array with microgrooves is approximately ten times smaller than that on a plain Si surface. This suggests that potentially high heat and mass transfer rates can be achieved on the surface. The insight from this study has implications in enhancing energy efficiency in a wide range of thermal energy conversion systems. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | spatial control | en_US |
dc.subject | heterogeneous nucleation | en_US |
dc.subject | superhydrophobic surfaces | en_US |
dc.subject | Si nanowire arrays | en_US |
dc.title | Spatial Control of Heterogeneous Nucleation on the Superhydrophobic Nanowire Array | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/adfm.201301984 | en_US |
dc.identifier.journal | ADVANCED FUNCTIONAL MATERIALS | en_US |
dc.citation.volume | 24 | en_US |
dc.citation.issue | 9 | en_US |
dc.citation.spage | 1211 | en_US |
dc.citation.epage | 1217 | en_US |
dc.contributor.department | 機械工程學系 | zh_TW |
dc.contributor.department | Department of Mechanical Engineering | en_US |
dc.identifier.wosnumber | WOS:000332337000003 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.