標題: | An energy efficient real-time seizure detection method in rats with spontaneous temporal lobe epilepsy |
作者: | Wang, Yu-Lin Liang, Sheng-Fu Shaw, Fu-Zen Huang, Yu-Shin Chen, Yin-Lin 生醫電子轉譯研究中心 Biomedical Electronics Translational Research Center |
關鍵字: | electroencephalogram;heirarchical architecture;linear discriminant analysis;seizure detection;temporal lobe epilepsy |
公開日期: | 2013 |
摘要: | The presence of an on-line seizure detection system could drive an antiepileptic stimulator in real time to suppress seizure generation and to enhance the patients' safety and quality of life. In this paper, the continuous long-term EEGs of three Wistar rats with spontaneous temporal lobe seizure were analyzed. We proposed the development of an energy efficient real-time seizure detection method that employs a hierarchical architecture. The first stage was used to fast detect the seizure-like EEG segment, and a classifier was utilized in the second stage for final confirmation. Only when a suspected seizure segment is found, the second stage is activated. With 2-staged architecture, it saved about 99.4% computation energy in the experiment. Therefore, it is useful to improve the longevity of the closed-loop seizure control system. Three classifiers, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support vector machine (SVM), were applied for comparison. From the experimental results, three classifiers yielded the comparable performances. However, considering of the trade-off between detection performances and power consumption, LDA which yielded the 100% detection rate, 0.22 FP/hr, and 1.69 s detection latency is suggested for a portable closed-loop seizure controller. |
URI: | http://hdl.handle.net/11536/24087 |
ISBN: | 978-1-4673-5871-2 |
期刊: | 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, COGNITIVE ALGORITHMS, MIND, AND BRAIN (CCMB) |
起始頁: | 29 |
結束頁: | 35 |
顯示於類別: | 會議論文 |