完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Shang-Linen_US
dc.contributor.authorWu, Chun-Weien_US
dc.contributor.authorPal, Nikhil R.en_US
dc.contributor.authorChen, Chih-Yuen_US
dc.contributor.authorChen, Shi-Anen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:35:40Z-
dc.date.available2014-12-08T15:35:40Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4673-5871-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/24088-
dc.description.abstractA Brain-Computer Interface (BCI) system provides a convenient way of communication for healthy subjects and subjects who suffer from severe diseases such as amyotrophic lateral sclerosis (ALS). Motor imagery (MI) is one of the popular ways of designing BCI systems. The architecture of many BCI system is quite complex and they involve time consuming processing. The electroencephalography (EEG) signal is the most commonly used inputs for BCI applications but EEG is often contaminated with noise. To overcome such drawbacks, in this paper we use the common spatial pattern (CSP) for feature extraction from EEG and the linear discriminant analysis (LDA) for motor imagery classification. In this study, CSP and LDA have been used to reduce the artifact and classify MI-based EEG signal. We have used two-level cross validation scheme to determine the subject specific best time window and number of CSP features. We have compared the performance of our system with BCI competition results. We have also experimented with MI data generated in our lab. The proposed system is found to produce good results. In particular, using our EEG data for MI movements, we have obtained an average classification accuracy of 80% for two subjects using only 9 channels, without any feature selection. This proposed MI-based BCI system may be used in real life applications.en_US
dc.language.isoen_USen_US
dc.subjectBrain-Computer Interface (BCI)en_US
dc.subjectMotor imagery (MI)en_US
dc.subjectelectroencephalography (EEG)en_US
dc.subjectcommon spatial pattern (CSP)en_US
dc.subjectlinear discriminant analysis (LOA)en_US
dc.titleCommon Spatial Pattern and Linear Discriminant Analysis for Motor Imagery Classificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, COGNITIVE ALGORITHMS, MIND, AND BRAIN (CCMB)en_US
dc.citation.spage146en_US
dc.citation.epage151en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000335266900022-
顯示於類別:會議論文