完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Hui-Lingen_US
dc.contributor.authorCharoenkwan, Phasiten_US
dc.contributor.authorSrinivasulu, Yerukala Sathipatien_US
dc.contributor.authorLee, Hua-Chinen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2014-12-08T15:35:46Z-
dc.date.available2014-12-08T15:35:46Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4673-5875-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/24151-
dc.description.abstractFinding the molecular features causes the halophilicity in the halostable organisms is helpful to understand the halophilic adaption. In this study, we proposed a prediction method for halophilic proteins by using a machine learning method. The stages of this study are six-fold. First, we establish a non-redundant dataset of the halophilic proteins, collected from NCBI, Uniprotkb and EMBL-EBI databases. The dataset consists of 245 positive and negative proteins with sequence identity < 25%. Second, the protein sequences are represented by three types of feature vector sets which include amino acid composition, dipeptide composition, and physicochemical properties. Third, we propose three classifiers based on support vector machine (SVM) to classify the halophilic proteins and non-halophilic proteins. Fourth, the independent test accuracies of the three efficient classifiers are larger than 83%. Fifth, an inheritable bi-objective combinatory genetic algorithm is utilized to select a set of 11 physicochemical properties (PCPs). Sixth, these abundant amino acids, high different dipeptides (amino acid pair) and 11 informative PCPs can support to analyze the halophilic and non-halophilic proteins.en_US
dc.language.isoen_USen_US
dc.subjectHalophilic proteinsen_US
dc.subjectSVMen_US
dc.subjectPhysicochemical propertiesen_US
dc.subjectGenetic algorithmsen_US
dc.titleDesigning predictors of halophilic and non-halophilic proteins using support vector machinesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB)en_US
dc.citation.spage230en_US
dc.citation.epage237en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000333898800034-
顯示於類別:會議論文