完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDaraghmi, Yousef-Awwaden_US
dc.contributor.authorYi, Chih-Weien_US
dc.contributor.authorChiang, Tsun-Chiehen_US
dc.date.accessioned2014-12-08T15:35:54Z-
dc.date.available2014-12-08T15:35:54Z-
dc.date.issued2014-04-01en_US
dc.identifier.issn1524-9050en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TITS.2013.2287512en_US
dc.identifier.urihttp://hdl.handle.net/11536/24266-
dc.description.abstractParallel, coordinated, and network-wide traffic management requires accurate and efficient traffic forecasting models to support online, real-time, and proactive dynamic control. Forecast accuracy is impacted by a critical characteristic of traffic flow, i.e., overdispersion. Efficiency depends on the time complexity of forecasting algorithms. Therefore, this paper proposes a novel spatiotemporal multivariate forecasting model that is based on the negative binomial additive models (NBAMs). Negative binomial is utilized to handle overdispersion, and additive models are used to efficiently smooth nonlinear spatial and temporal variables. To evaluate the model, it is applied to real-world data collected from Taipei City and compared with other forecasting models. The results indicate that the proposed model is an accurate and efficient approach in forecasting traffic flow in urban context where flow is overdispersed, autocorrelated, and influenced by upstream and downstream roads as well as the daily seasonal patterns, namely, low-, moderate-, and high-traffic seasons.en_US
dc.language.isoen_USen_US
dc.subjectAdditive modelsen_US
dc.subjectautocorrelationen_US
dc.subjectmultivariateen_US
dc.subjectnegative binomial (NB)en_US
dc.subjectoverdispersionen_US
dc.subjectseasonal patternsen_US
dc.subjectshort-term forecasten_US
dc.subjectspatial correlationen_US
dc.titleNegative Binomial Additive Models for Short-Term Traffic Flow Forecasting in Urban Areasen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TITS.2013.2287512en_US
dc.identifier.journalIEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMSen_US
dc.citation.volume15en_US
dc.citation.issue2en_US
dc.citation.spage784en_US
dc.citation.epage793en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000334584800029-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000334584800029.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。