Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Pi-Juen_US
dc.contributor.authorWeng, Chen-Yaen_US
dc.contributor.authorChang, Shu-Weien_US
dc.contributor.authorLin, Tzy-Rongen_US
dc.contributor.authorTien, Chung-Haoen_US
dc.date.accessioned2014-12-08T15:36:00Z-
dc.date.available2014-12-08T15:36:00Z-
dc.date.issued2014en_US
dc.identifier.isbn978-0-8194-9893-9en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/24357-
dc.identifier.urihttp://dx.doi.org/10.1117/12.2038718en_US
dc.description.abstractWe analyze a plasmonic gap-mode Fabry-Perot nanocavity containing a metallic nanowire. The proper choice of the cladding layer brings about a decent confinement inside the active region for the fundamental and first-order plasmonic gap modes. We numerically extract the reflectivity of the fundamental and first-order mode and obtain the optical field inside the cavity. We also study the dependence of the reflectivity on the thickness of Ag reflectors and show that a decent reflectivity above 90 % is achievable. For such cavities with a cavity length approaching 1.5 pm, a quality factor near 150 and threshold gain lower than 1500 cm-1 are achievable.en_US
dc.language.isoen_USen_US
dc.subjectsurface plasmonsen_US
dc.subjectsemiconductor lasersen_US
dc.subjectnanotechnologyen_US
dc.titlePlasmonic gap mode nanocavities at telecommunication wavelengthsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.2038718en_US
dc.identifier.journalPHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXIIen_US
dc.citation.volume8980en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000336039900054-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000336039900054.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.