完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Che-Ien_US
dc.contributor.authorKung, Hsu-Yangen_US
dc.contributor.authorChen, Chi-Huaen_US
dc.contributor.authorKuo, Li-Chiaen_US
dc.date.accessioned2014-12-08T15:36:02Z-
dc.date.available2014-12-08T15:36:02Z-
dc.date.issued2014-08-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2013.12.049en_US
dc.identifier.urihttp://hdl.handle.net/11536/24385-
dc.description.abstractTaiwan generally has large-scale landslides and torrential rainfall during the typhoon season. As Wireless Sensor Networks (WSN) and mobile communication technologies advance rapidly, state-of-the-art technologies are adopted to build a model to reliably predict and monitor disasters, as well as accumulate environmental variation-related information. By integrating WSN and Analytic Network Process (ANP), this study evaluates the weight of disaster factors that adopt the consistency index of pair comparisons on hillslopes. The weight estimation and classification of disaster factors are based on the K-means model to build the hillslope prediction model. The Portrait-based Disaster Alerting System (PDAS) is designed and implemented using the proposed disaster prediction model. The PDAS adopts Web-GIS to visualize the environmental information. Evaluation results of the system indicate that the proposed prediction model achieves more accurate disaster determination than the conventional method. (C) 2014 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectWireless Sensor Networksen_US
dc.subjectAnalytic Network Processen_US
dc.subjectDisaster prediction modelen_US
dc.subjectPortrait-based Disaster Alerting Systemen_US
dc.titleAn intelligent slope disaster prediction and monitoring system based on WSN and ANPen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2013.12.049en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume41en_US
dc.citation.issue10en_US
dc.citation.spage4554en_US
dc.citation.epage4562en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000335629500005-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000335629500005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。