完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHelou, Elias Salomaoen_US
dc.contributor.authorCensor, Yairen_US
dc.contributor.authorChen, Tai-Beenen_US
dc.contributor.authorChern, I-Liangen_US
dc.contributor.authorDe Pierro, Alvaro Rodolfoen_US
dc.contributor.authorJiang, Mingen_US
dc.contributor.authorLu, Henry Horng-Shingen_US
dc.date.accessioned2014-12-08T15:36:06Z-
dc.date.available2014-12-08T15:36:06Z-
dc.date.issued2014-05-01en_US
dc.identifier.issn0266-5611en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0266-5611/30/5/055003en_US
dc.identifier.urihttp://hdl.handle.net/11536/24445-
dc.description.abstractWe study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called string-averaging expectation maximization (SAEM). In the string-averaging algorithmic regime, the index set of all underlying equations is split into subsets, called \'strings\', and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points of all strings are averaged to form the next iterate. SAEM algorithms with several strings present better practical merits than the classical row-action maximum-likelihood algorithm. We present numerical experiments showing the effectiveness of the algorithmic scheme, using data of image reconstruction problems. Performance is evaluated from the computational cost and reconstruction quality viewpoints. A complete convergence theory is also provided.en_US
dc.language.isoen_USen_US
dc.subjectpositron emission tomography (PET)en_US
dc.subjectstring-averagingen_US
dc.subjectblock-iterativeen_US
dc.subjectexpectation-maximization (EM) algorithmen_US
dc.subjectordered subsets expectation maximization (OSEM) algorithmen_US
dc.subjectrelaxed EMen_US
dc.subjectstring-averaging EM algorithmen_US
dc.titleString-averaging expectation-maximization for maximum likelihood estimation in emission tomographyen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0266-5611/30/5/055003en_US
dc.identifier.journalINVERSE PROBLEMSen_US
dc.citation.volume30en_US
dc.citation.issue5en_US
dc.citation.epageen_US
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000336265400003-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000336265400003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。