Full metadata record
DC FieldValueLanguage
dc.contributor.authorWei, Quanlingen_US
dc.contributor.authorChang, Tsung-Shengen_US
dc.contributor.authorHan, Songen_US
dc.date.accessioned2014-12-08T15:36:21Z-
dc.date.available2014-12-08T15:36:21Z-
dc.date.issued2014-06-01en_US
dc.identifier.issn0254-5330en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10479-014-1565-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/24685-
dc.description.abstractThis research intends to develop the classifiers for dealing with binary classification problems with interval data whose difficulty to be tackled has been well recognized, regardless of the field. The proposed classifiers involve using the ideas and techniques of both quantiles and data envelopment analysis (DEA), and are thus referred to as quantile-DEA classifiers. That is, the classifiers first use the concept of quantiles to generate a desired number of exact-data sets from a training-data set comprising interval data. Then, the classifiers adopt the concept and technique of an intersection-form production possibility set in the DEA framework to construct acceptance domains with each corresponding to an exact-data set and thus a quantile. Here, an intersection-form acceptance domain is actually represented by a linear inequality system, which enables the quantile-DEA classifiers to efficiently discover the groups to which large volumes of data belong. In addition, the quantile feature enables the proposed classifiers not only to help reveal patterns, but also to tell the user the value or significance of these patterns.en_US
dc.language.isoen_USen_US
dc.subjectData envelopment analysisen_US
dc.subjectClassifieren_US
dc.subjectQuantileen_US
dc.subjectProduction possibility seten_US
dc.subjectInterval dataen_US
dc.titleQuantile-DEA classifiers with interval dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10479-014-1565-yen_US
dc.identifier.journalANNALS OF OPERATIONS RESEARCHen_US
dc.citation.volume217en_US
dc.citation.issue1en_US
dc.citation.spage535en_US
dc.citation.epage563en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000337184500026-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000337184500026.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.