Full metadata record
DC FieldValueLanguage
dc.contributor.authorHan, Ming-Fengen_US
dc.contributor.authorLiao, Lun-Deen_US
dc.contributor.authorLiu, Yu-Hangen_US
dc.contributor.authorWang, Wan-Ruen_US
dc.contributor.authorLin, Bor-Shyhen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:36:26Z-
dc.date.available2014-12-08T15:36:26Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6890-4en_US
dc.identifier.issn0886-1420en_US
dc.identifier.urihttp://hdl.handle.net/11536/24768-
dc.description.abstractIn this study, a optimization process was performed for the developed dry electroencephalography (EEG) electrodes by using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to minima the skin-electrode impedance. The developed dry EEG electrodes can measure the EEG signals without any gels applied and no skin preparation. However, how to find a proper skin-electrode contact area is an important issue. The contact area is directly related to the electrodes impedance and fabrication cost. Therefore, the NSGA-II is used to searching the suitable contact area and other design parameters. NSGA-II is a wieldy used optimization method, especially for the multi-objectives issues like this case. Finally, we compare the results of the simulation and experiments for ensuring the optimal process. The experiment results show that using the optimal values provided from NSGA-II can achieve the minima skin-electrode impedance. It confirms the dry electrode can be effectively used for the cognitive or other applications in the future.en_US
dc.language.isoen_USen_US
dc.subjectEEGen_US
dc.subjectDry electrodeen_US
dc.subjectBrain computer interfaceen_US
dc.subjectOptimal processen_US
dc.titlePerformance Optimized of the Novel Dry EEG Electrodes by using the Non-Dominated Sorting Genetic Algorithms (NSGA-II)en_US
dc.typeArticleen_US
dc.identifier.journalTENCON 2010: 2010 IEEE REGION 10 CONFERENCEen_US
dc.citation.spage1710en_US
dc.citation.epage1715en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000287978600285-
Appears in Collections:Conferences Paper