完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Shih-Huien_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:36:26Z-
dc.date.available2014-12-08T15:36:26Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4799-0386-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/24780-
dc.description.abstractIn this paper, the least trimmed sum of absolute deviations (LTA) estimator, frequently used in robust linear parametric regression problems, will be generalized to nonparametric least trimmed sum of absolute deviations-artificial neural network (LTA-ANN) for nonlinear regression problems. In linear parametric regression problems, the LTA estimator usually have good robustness against outliers and can theoretically tolerate up to 50% of outlying data. Moreover, a nonderivative hybrid method mixing the simplex method of Nelder and Mead (NM) and particle swarm optimization algorithm (PSO), abbreviated as SNM-PSO, will be provided in this study for the training of the parameters of LTA-ANN. Some numerical examples will be provided to compare the robustness against outliers for usual artificial neural network (ANN) and the proposed LTA-ANN. Simulation results show that the LTA-ANN proposed in this paper have good robustness against outliers.en_US
dc.language.isoen_USen_US
dc.subjectleast trimmed sum of absolute deviations (LTA) estimatoren_US
dc.subjectartificial neural network (ANN)en_US
dc.subjectleast trimmed sum of absolute deviations artificial neural network (LTA-ANN)en_US
dc.subjectparticle swarm optimization (PSO)en_US
dc.subjectsimplex method of Nelder and Mead (NM)en_US
dc.titleStudy on Least Trimmed Absolute Deviations Artificial Neural Networken_US
dc.typeProceedings Paperen_US
dc.identifier.journal2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY 2013)en_US
dc.citation.spage156en_US
dc.citation.epage160en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000339736400028-
顯示於類別:會議論文