Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Chi Hinen_US
dc.contributor.authorCzubak, Magdalenaen_US
dc.contributor.authorYoneda, Tsuyoshien_US
dc.date.accessioned2014-12-08T15:36:32Z-
dc.date.available2014-12-08T15:36:32Z-
dc.date.issued2014-07-15en_US
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physd.2014.05.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/24876-
dc.description.abstractMa and Wang derived an equation linking the separation location and times for the boundary layer separation of incompressible fluid flows. The equation gave a necessary condition for the separation (bifurcation) point. The purpose of this paper is to generalize the equation to other geometries, and to phrase it as a simple ODE. Moreover we consider the Navier-Stokes equation with the Coriolis effect, which is related to the presence of trade winds on Earth. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNavier-Stokes equationen_US
dc.subjectRiemannian manifoldsen_US
dc.subjectBoundary layer separationen_US
dc.subjectCoriolis effecten_US
dc.titleAn ODE for boundary layer separation on a sphere and a hyperbolic spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physd.2014.05.004en_US
dc.identifier.journalPHYSICA D-NONLINEAR PHENOMENAen_US
dc.citation.volume282en_US
dc.citation.issueen_US
dc.citation.spage34en_US
dc.citation.epage38en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
Appears in Collections:Articles


Files in This Item:

  1. 000339146300004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.