完整後設資料紀錄
DC 欄位語言
dc.contributor.authorZao, John K.en_US
dc.contributor.authorGan, Tchin-Tzeen_US
dc.contributor.authorYou, Chun-Kaien_US
dc.contributor.authorChung, Cheng-Enen_US
dc.contributor.authorWang, Yu-Teen_US
dc.contributor.authorMendez, Sergio Jose Rodriguezen_US
dc.contributor.authorMullen, Timen_US
dc.contributor.authorYu, Chiehen_US
dc.contributor.authorKothe, Christianen_US
dc.contributor.authorHsiao, Ching-Tengen_US
dc.contributor.authorChu, San-Liangen_US
dc.contributor.authorShieh, Ce-Kuenen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.date.accessioned2014-12-08T15:36:35Z-
dc.date.available2014-12-08T15:36:35Z-
dc.date.issued2014-06-03en_US
dc.identifier.issn1662-5161en_US
dc.identifier.urihttp://dx.doi.org/10.3389/fnhum.2014.00370en_US
dc.identifier.urihttp://hdl.handle.net/11536/24930-
dc.description.abstractEEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users\' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson\'s disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.en_US
dc.language.isoen_USen_US
dc.subjectbrain computer interfacesen_US
dc.subjectbio-sensorsen_US
dc.subjectmachine-to-machine communicationen_US
dc.subjectsemantic sensor weben_US
dc.subjectlinked dataen_US
dc.subjectFog Computingen_US
dc.subjectCloud Computingen_US
dc.titlePervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technologyen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fnhum.2014.00370en_US
dc.identifier.journalFRONTIERS IN HUMAN NEUROSCIENCEen_US
dc.citation.volume8en_US
dc.citation.issueen_US
dc.citation.spageen_US
dc.citation.epageen_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
顯示於類別:期刊論文


文件中的檔案:

  1. 000339571200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。