Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yan, Zhidan | en_US |
dc.contributor.author | Lin, Wu-Hsiung | en_US |
dc.contributor.author | Wang, Wei | en_US |
dc.date.accessioned | 2014-12-08T15:36:35Z | - |
dc.date.available | 2014-12-08T15:36:35Z | - |
dc.date.issued | 2014-06-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24931 | - |
dc.description.abstract | A graph G is equitably k-colorable if its vertex set can be partitioned into k independent sets, any two of which differ in size by at most 1. We prove a conjecture of Lin and Chang which asserts that for any bipartite graphs G and H, their Cartesian product G square H is equitably k-colorable whenever k >= 4. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Equitable coloring | en_US |
dc.subject | Equitable chromatic threshold | en_US |
dc.subject | Cartesian product | en_US |
dc.subject | Bipartite graph | en_US |
dc.title | THE EQUITABLE CHROMATIC THRESHOLD OF THE CARTESIAN PRODUCT OF BIPARTITE GRAPHS IS AT MOST 4 | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 18 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 773 | en_US |
dc.citation.epage | 780 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000340078800007 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |