Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan, Zhidanen_US
dc.contributor.authorLin, Wu-Hsiungen_US
dc.contributor.authorWang, Weien_US
dc.date.accessioned2014-12-08T15:36:35Z-
dc.date.available2014-12-08T15:36:35Z-
dc.date.issued2014-06-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/24931-
dc.description.abstractA graph G is equitably k-colorable if its vertex set can be partitioned into k independent sets, any two of which differ in size by at most 1. We prove a conjecture of Lin and Chang which asserts that for any bipartite graphs G and H, their Cartesian product G square H is equitably k-colorable whenever k >= 4.en_US
dc.language.isoen_USen_US
dc.subjectEquitable coloringen_US
dc.subjectEquitable chromatic thresholden_US
dc.subjectCartesian producten_US
dc.subjectBipartite graphen_US
dc.titleTHE EQUITABLE CHROMATIC THRESHOLD OF THE CARTESIAN PRODUCT OF BIPARTITE GRAPHS IS AT MOST 4en_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume18en_US
dc.citation.issue3en_US
dc.citation.spage773en_US
dc.citation.epage780en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000340078800007-
dc.citation.woscount1-
Appears in Collections:Articles