完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShuai, JJen_US
dc.contributor.authorLi, HLen_US
dc.date.accessioned2014-12-08T15:36:36Z-
dc.date.available2014-12-08T15:36:36Z-
dc.date.issued2005en_US
dc.identifier.isbn3-540-28660-8en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/24934-
dc.description.abstractThis paper proposes a hybrid approach that predicts the failure of firms based on the past business data, combining rough set approach and worst practice data envelopment analysis (DEA). The worst practice DEA can identify worst performers (in quantitative financial data) by placing them on the frontier while the rules developed by rough set uses non-financial information to predict the characteristics of failed firms. Both DEA and rough set are commonly used in practice. Both have limitations. The hybrid model Rough DEA takes the best of both models, by avoiding the pitfalls of each. For the experiment, the financial data of 396 Taiwan firms during the period 2002-2003 were selected. The results show that the hybrid approach is a promising alternative to the conventional methods for failure prediction.en_US
dc.language.isoen_USen_US
dc.titleUsing rough set and worst practice DEA in business failure predictionen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGSen_US
dc.citation.volume3642en_US
dc.citation.spage503en_US
dc.citation.epage510en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000232190100053-
顯示於類別:會議論文