Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, YCen_US
dc.contributor.authorYang, JMen_US
dc.contributor.authorTsai, CHen_US
dc.contributor.authorKao, CYen_US
dc.date.accessioned2014-12-08T15:36:41Z-
dc.date.available2014-12-08T15:36:41Z-
dc.date.issued2005en_US
dc.identifier.isbn3-540-25396-3en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/25033-
dc.description.abstractWe have proposed a new method for quantitative structure-activity relationship (QSAR) analysis. This tool, termed GEMPLS, combines a genetic evolutionary method with partial least squares (PLS). We designed a new genetic operator and used Mahalanobis distance to improve predicted accuracy and speed up a solution for QSAR. The number of latent variables (lv) was encoded into the chromosome of GA, instead of scanning the best lv for PLS. We applied GEMPLS on a comparative binding energy (COMBINE) analysis system of 48 inhibitors of the HIV-1 protease. Using GEMPLS, the cross-validated correlation coefficient (q(2)) is 0.9053 and external SDEP (SDEPex) is 0.61. The results indicate that GEMPLS is very comparative to GAPLS and GEMPLS is faster than GAPLS for this data set. GEMPLS yielded the QSAR models, in which selected residues are consistent with some experimental evidences.en_US
dc.language.isoen_USen_US
dc.titleGEMPLS: A new QSAR method combining generic evolutionary method and partial least squaresen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalAPPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGSen_US
dc.citation.volume3449en_US
dc.citation.spage125en_US
dc.citation.epage135en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000229211900013-
Appears in Collections:Conferences Paper