完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHung, Shao-Hangen_US
dc.contributor.authorChao, Chih-Fengen_US
dc.contributor.authorWang, Shu-Kaien_US
dc.contributor.authorLin, Bor-Shyhen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:36:44Z-
dc.date.available2014-12-08T15:36:44Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6890-4en_US
dc.identifier.issn0886-1420en_US
dc.identifier.urihttp://hdl.handle.net/11536/25098-
dc.description.abstractThis paper presents a very large scale integration (VLSI) circuit implementation for Epileptic Seizure Prediction System based combination of wavelet and chaos theory. The system consists with operation units of discrete wavelet transform (DWT), correlation dimension ( CD), and correlation coefficient. This work discovered by certain bandwidth of signal extraction with DWT, and the combination with Chaotic features analysis, it can achieve a higher accuracy of epileptic prediction. Furthermore, the correlation coefficient between two correlation dimensions with different embedding dimensions was proposed as a novel feature for epileptic seizure prediction in this study. The proposed system was evaluated with intracranial Electrocorticography (ECoG) recordings from a set of eleven patients with refractory temporal lobe epilepsy (TLE). The accuracy of experiment result for all subjects can achieve 87%, and a false prediction rate is 0.24/h. In average warning time occur about 27 min ahead the ictal.en_US
dc.language.isoen_USen_US
dc.subjectcomponenten_US
dc.subjectSeizure Predictionen_US
dc.subjectECoGen_US
dc.subjectDiscrete Wavelet Transformen_US
dc.subjectCorrelation Dimensionen_US
dc.titleVLSI implementation for Epileptic Seizure Prediction System based on Wavelet and Chaos Theoryen_US
dc.typeArticleen_US
dc.identifier.journalTENCON 2010: 2010 IEEE REGION 10 CONFERENCEen_US
dc.citation.spage364en_US
dc.citation.epage368en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000287978600060-
顯示於類別:會議論文