Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Cheng-Hungen_US
dc.contributor.authorSu, Miin-Tsairen_US
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:36:48Z-
dc.date.available2014-12-08T15:36:48Z-
dc.date.issued2014-09-01en_US
dc.identifier.issn1562-2479en_US
dc.identifier.urihttp://hdl.handle.net/11536/25184-
dc.description.abstractThis study presents a new evolutionary learning algorithm to optimize the parameters of the neural fuzzy classifier (NFC). This new evolutionary learning algorithm is based on a hybrid of bacterial foraging optimization and particle swarm optimization. It is thus called bacterial foraging particle swarm optimization (BFPSO). The proposed BFPSO method performs local search through the chemotactic movement operation of bacterial foraging whereas the global search over the entire search space is accomplished by a particle swarm operator. The NFC model uses functional link neural networks as the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the functional link neural networks. Finally, the proposed neural fuzzy classifier with bacterial foraging particle swarm optimization (NFC-BFPSO) is adopted in several classification applications. Experimental results have demonstrated that the proposed NFC-BFPSO method can outperform other methods.en_US
dc.language.isoen_USen_US
dc.subjectNeural fuzzy classifieren_US
dc.subjectbacterial foraging optimizationen_US
dc.subjectparticle swarm optimizationen_US
dc.subjectclassificationen_US
dc.subjectskin color detectionen_US
dc.titleA Hybrid of Bacterial Foraging Optimization and Particle Swarm Optimization for Evolutionary Neural Fuzzy Classifieren_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF FUZZY SYSTEMSen_US
dc.citation.volume16en_US
dc.citation.issue3en_US
dc.citation.spage422en_US
dc.citation.epage433en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000342525400014-
dc.citation.woscount0-
Appears in Collections:Articles