Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, TCen_US
dc.contributor.authorLi, RKen_US
dc.date.accessioned2014-12-08T15:36:48Z-
dc.date.available2014-12-08T15:36:48Z-
dc.date.issued2005-01-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2004.08.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/25187-
dc.description.abstractThis study presents a novel Adaptive resonance theory-Counterpropagation neural network (ART-CPN) for solving forecasting problems. The network is based on the ART concept and the CPN learning algorithm for constructing the neural network. The vigilance parameter is used to automatically generate the nodes of the cluster layer for the CPN learning process. This process improves the initial weight problem and the adaptive nodes of the cluster layer (Kohonen layer). ART-CPN involves real-time learning and is capable of developing a more stable and plastic prediction model of input patterns by self-organization. The advantages of ART-CPN include the ability to cluster, learn and construct the network model for forecasting problems. The network was applied to solve the real forecasting problems. The learning algorithm revealed better learning efficiency and good prediction performance. (C) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectadaptive resonance theoryen_US
dc.subjectcounterpropagationen_US
dc.subjectneural networken_US
dc.titleA new ART-counterpropagation neural network for solving a forecasting problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2004.08.006en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume28en_US
dc.citation.issue1en_US
dc.citation.spage21en_US
dc.citation.epage27en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000225261500003-
dc.citation.woscount12-
Appears in Collections:Articles


Files in This Item:

  1. 000225261500003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.