完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLIN, JCen_US
dc.contributor.authorTSAI, WHen_US
dc.date.accessioned2014-12-08T15:04:01Z-
dc.date.available2014-12-08T15:04:01Z-
dc.date.issued1994-05-01en_US
dc.identifier.issn0162-8828en_US
dc.identifier.urihttp://dx.doi.org/10.1109/34.291439en_US
dc.identifier.urihttp://hdl.handle.net/11536/2524-
dc.description.abstractWe propose in this correspondence a new method to perform two-class clustering of 2-D data in a quick and, automatic way by preserving certain features of the input data. The method is analytical, deterministic, unsupervised, automatic, and noniterative. The computation time is of order n if the data size is n, and hence much faster than any other method which requires the computation of an n-by-n dissimilarity matrix. Furthermore, the proposed method does not have the trouble of guessing initial values. This new approach is thus more suitable for fast automatic hierarchical clustering or any other fields requiring fast automatic two-class clustering of 2-D data. The method can be extended to cluster data in higher dimensional space. A 3-D example is included.en_US
dc.language.isoen_USen_US
dc.subject2-CLASS CLUSTERINGen_US
dc.subjectCLUSTER REPRESENTATIVESen_US
dc.subjectFEATURE-PRESERVINGen_US
dc.subjectANALYTICAL FORMULASen_US
dc.subjectDECISION BOUNDARYen_US
dc.subjectAUTOMATIC FAST CLUSTERINGen_US
dc.subjectK-MEANSen_US
dc.subjectHIERARCHICAL METHODSen_US
dc.titleFEATURE-PRESERVING CLUSTERING OF 2-D DATA FOR 2-CLASS PROBLEMS USING ANALYTICAL FORMULAS - AN AUTOMATIC AND FAST APPROACHen_US
dc.typeLetteren_US
dc.identifier.doi10.1109/34.291439en_US
dc.identifier.journalIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCEen_US
dc.citation.volume16en_US
dc.citation.issue5en_US
dc.citation.spage554en_US
dc.citation.epage560en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1994NP14100014-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. A1994NP14100014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。