Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Wei-Qiangen_US
dc.contributor.authorGu, Xianfeng Daviden_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorYau, Shing-Tungen_US
dc.date.accessioned2014-12-08T15:36:54Z-
dc.date.available2014-12-08T15:36:54Z-
dc.date.issued2014-12-01en_US
dc.identifier.issn0885-7474en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10915-014-9840-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/25304-
dc.description.abstractIn the past decades, many methods for computing conformal mesh parameterizations have been developed in response to demand of numerous applications in the field of geometry processing. Spectral conformal parameterization (SCP) (Mullen et al. in Proceedings of the symposium on geometry processing, SGP \'08. Eurographics Association, Aire-la-Ville, Switzerland, pp 1487-1494, 2008) is one of these methods used to compute a quality conformal parameterization based on the spectral techniques. SCP focuses on a generalized eigenvalue problem (GEP) whose eigenvector(s) associated with the smallest positive eigenvalue(s) provide the conformal parameterization result. This paper is devoted to studying a novel eigensolver for this GEP. Based on structures of the matrix pair , we show that this GEP can be transformed into a small-scale compressed and deflated standard eigenvalue problem with a symmetric positive definite skew-Hamiltonian operator. We then propose a symmetric skew-Hamiltonian isotropic Lanczos algorithm (HILA) to solve the reduced problem. Numerical experiments show that our compressed deflating technique can exclude the impact of convergence from the kernel of and transform the original problem to a more robust system. The novel HILA method can effectively avoid the disturbance of duplicate eigenvalues. As a result, based on the spectral model of SCP, our numerical eigensolver can compute the conformal parameterization accurately and efficiently.en_US
dc.language.isoen_USen_US
dc.titleA Novel Symmetric Skew-Hamiltonian Isotropic Lanczos Algorithm for Spectral Conformal Parameterizationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10915-014-9840-2en_US
dc.identifier.journalJOURNAL OF SCIENTIFIC COMPUTINGen_US
dc.citation.volume61en_US
dc.citation.issue3en_US
dc.citation.spage558en_US
dc.citation.epage583en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000343821300005-
dc.citation.woscount0-
Appears in Collections:Articles