完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:36:59Z-
dc.date.available2014-12-08T15:36:59Z-
dc.date.issued2014-09-01en_US
dc.identifier.issn0027-7630en_US
dc.identifier.urihttp://dx.doi.org/10.1215/00277630-2684452en_US
dc.identifier.urihttp://hdl.handle.net/11536/25389-
dc.description.abstractIn this paper, we prove that, for an integer r with (r, 6) = 1 and 0 < r < 24 and a nonnegative even integer s, the set {eta(24 tau)(r) f(24 tau) is an element of M-s (1)} is isomorphic to S-r+2s-1(new) (6, -(8/r), -(12/r)) circle times (12/.) as Hecke modules under the Shimura correspondence. Here M-s (1) denotes the space of modular forms of weight s on Gamma(0)(1) = SL(2, Z), S-2k(new) (6, is an element of(2), is an element of(3)) is the space of newforms of weight 2k on Gamma(0)(6) that are eigenfunctions with eigenvalues is an element of(2) and is an element of(3) for Atkin-Lehner involutions W-2 and W-3 respectively, and the notation circle times(12/.). There is also an analogous results for the cases (r, 6) = 3.en_US
dc.language.isoen_USen_US
dc.titleMODULAR FORMS OF HALF-INTEGRAL WEIGHTS ON SL(2, Z)en_US
dc.typeArticleen_US
dc.identifier.doi10.1215/00277630-2684452en_US
dc.identifier.journalNAGOYA MATHEMATICAL JOURNALen_US
dc.citation.volume215en_US
dc.citation.issueen_US
dc.citation.spage1en_US
dc.citation.epage66en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000342970200001-
dc.citation.woscount0-
顯示於類別:期刊論文