Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Yi-jungen_US
dc.contributor.authorLai, Chien-lunen_US
dc.date.accessioned2014-12-08T15:36:59Z-
dc.date.available2014-12-08T15:36:59Z-
dc.date.issued2014-08-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/25394-
dc.description.abstractLet M be a complete Riemannian manifold with infinite volume and Omega be a compact subdomain in M. In this paper we obtain two upper bound estimates for the first eigenvalue of the Laplacian on the punctured manifold MOmega subject to volume growth and lower bound of Ricci curvature, respectively. The proof hinges on asymptotic behavior of solutions of second order differential equations, the max-min principle and Bishop volume comparison theorem.en_US
dc.language.isoen_USen_US
dc.titleUPPER BOUNDS FOR THE FIRST EIGENVALUE OF THE LAPLACE OPERATOR ON COMPLETE RIEMANNIAN MANIFOLDSen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume18en_US
dc.citation.issue4en_US
dc.citation.spage1257en_US
dc.citation.epage1265en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000342861700017-
dc.citation.woscount0-
Appears in Collections:Articles