完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Mei-Lingen_US
dc.contributor.authorHung, Yung-Hsiangen_US
dc.contributor.authorLee, W. M.en_US
dc.contributor.authorLi, R. K.en_US
dc.contributor.authorJiang, Bo-Ruen_US
dc.date.accessioned2019-04-03T06:40:48Z-
dc.date.available2019-04-03T06:40:48Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn1537-744Xen_US
dc.identifier.urihttp://dx.doi.org/10.1155/2014/795624en_US
dc.identifier.urihttp://hdl.handle.net/11536/25404-
dc.description.abstractRecently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and gamma to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.en_US
dc.language.isoen_USen_US
dc.titleSVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifieren_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2014/795624en_US
dc.identifier.journalSCIENTIFIC WORLD JOURNALen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000343577100001en_US
dc.citation.woscount13en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 0d9eda47c9da9ab5426646e252275e68.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。