完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKo, LWen_US
dc.contributor.authorKuo, BCen_US
dc.contributor.authorLin, CTen_US
dc.date.accessioned2014-12-08T15:37:08Z-
dc.date.available2014-12-08T15:37:08Z-
dc.date.issued2005en_US
dc.identifier.isbn3-540-28894-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/25506-
dc.description.abstractIn real situation, gathering enough training samples is difficult and expensive. Assumption of enough training samples is usually not satisfied for high dimensional data. Small training sets usually cause Hughes phenomenon and singularity problems. Feature extraction and feature selection are usual ways to overcome these problems. In this study, an optimal classification system for classifying hyperspectral image data is proposed. It is made up of orthonormal coordinate axes of the feature space. Classification performance of the classification system is much better than the other well-known ones according to the experiment results below. It possesses the advantage of using fewer features and getting better performance.en_US
dc.language.isoen_USen_US
dc.subjectpattern recognitionen_US
dc.subjectfeature extractionen_US
dc.subjectfeature selectionen_US
dc.subjectHughes phenomenonen_US
dc.titleAn optimal nonparametric weighted system for hyperspectral data classificationen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalKNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGSen_US
dc.citation.volume3681en_US
dc.citation.spage866en_US
dc.citation.epage872en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000232719900124-
顯示於類別:會議論文