Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, JSen_US
dc.contributor.authorShao, YLen_US
dc.date.accessioned2014-12-08T15:37:17Z-
dc.date.available2014-12-08T15:37:17Z-
dc.date.issued2004-11-30en_US
dc.identifier.issn0271-2091en_US
dc.identifier.urihttp://dx.doi.org/10.1002/fld.787en_US
dc.identifier.urihttp://hdl.handle.net/11536/25623-
dc.description.abstractTwo-dimensional near-incompressible steady lid-driven cavity flows (Re= 100-7,500) are Simulated using multi-relaxation-time (MRT) model in the parallel lattice Boltzmann BGK Bhatnager-GrossKrook method (LBGK). Results are compared with those using single-relaxation-time (SRT) model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. Effects of variation of relaxation parameters in the MRT model, effects of number of the lattice points, improved computational convergence and reduced spatial oscillations of solution near Geometrically singular points in the flow field using LBGK method due to MRT model are highlighted in the study. In summary, lattice Boltzmann method using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows. Copyright (C) 2004 John Wiley Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectlattice Boltzmann BGK methoden_US
dc.subjectmulti-relaxation-timeen_US
dc.subjectsingle-relaxation-timeen_US
dc.titleSimulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time schemeen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/fld.787en_US
dc.identifier.journalINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDSen_US
dc.citation.volume46en_US
dc.citation.issue9en_US
dc.citation.spage921en_US
dc.citation.epage937en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000224996400002-
dc.citation.woscount22-
Appears in Collections:Articles


Files in This Item:

  1. 000224996400002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.