Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHIANG, CCen_US
dc.contributor.authorFU, HCen_US
dc.date.accessioned2014-12-08T15:04:04Z-
dc.date.available2014-12-08T15:04:04Z-
dc.date.issued1994-04-01en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://hdl.handle.net/11536/2571-
dc.description.abstractThis paper proposes a new type of neural network called the Dynamic Threshold Neural Network (DTNN). Through theoretical analysis, we prove that the classification capability of a DTNN can be twice as effective as a conventional sigmoidal multilayer neural network in classification capability. In other words, to successfully learn an arbitrarily given training set, a DTNN may need as little as half the number of free parameters required by a sigmoidal multilayer neural network.en_US
dc.language.isoen_USen_US
dc.titleTHE CLASSIFICATION CAPABILITY OF A DYNAMIC THRESHOLD NEURAL-NETWORKen_US
dc.typeArticleen_US
dc.identifier.journalPATTERN RECOGNITION LETTERSen_US
dc.citation.volume15en_US
dc.citation.issue4en_US
dc.citation.spage409en_US
dc.citation.epage418en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1994NE91900012-
dc.citation.woscount1-
Appears in Collections:Articles