完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | CHIANG, CC | en_US |
dc.contributor.author | FU, HC | en_US |
dc.date.accessioned | 2014-12-08T15:04:04Z | - |
dc.date.available | 2014-12-08T15:04:04Z | - |
dc.date.issued | 1994-04-01 | en_US |
dc.identifier.issn | 0167-8655 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2571 | - |
dc.description.abstract | This paper proposes a new type of neural network called the Dynamic Threshold Neural Network (DTNN). Through theoretical analysis, we prove that the classification capability of a DTNN can be twice as effective as a conventional sigmoidal multilayer neural network in classification capability. In other words, to successfully learn an arbitrarily given training set, a DTNN may need as little as half the number of free parameters required by a sigmoidal multilayer neural network. | en_US |
dc.language.iso | en_US | en_US |
dc.title | THE CLASSIFICATION CAPABILITY OF A DYNAMIC THRESHOLD NEURAL-NETWORK | en_US |
dc.type | Article | en_US |
dc.identifier.journal | PATTERN RECOGNITION LETTERS | en_US |
dc.citation.volume | 15 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 409 | en_US |
dc.citation.epage | 418 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:A1994NE91900012 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |