完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFU, HLen_US
dc.contributor.authorHUANG, KCen_US
dc.date.accessioned2014-12-08T15:04:05Z-
dc.date.available2014-12-08T15:04:05Z-
dc.date.issued1994-03-15en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/2580-
dc.description.abstractLet G = (V, E) be a graph. A bijection f:V--> {1, 2,...,V} is called a prime labelling if for each e = {u, v} in E, we have GCD(f(u),f(v)) = 1. A graph admits a prime labelling is called a prime graph. Around ten years ago, Roger Entringer conjectured that every tree is prime. So far, this conjecture is still unsolved. In this paper, we show that the conjecture is true for trees of order up to 15, and also show that a few other classes of graphs are prime.en_US
dc.language.isoen_USen_US
dc.titleON PRIME LABELINGSen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume127en_US
dc.citation.issue1-3en_US
dc.citation.spage181en_US
dc.citation.epage186en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1994NG61900017-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. A1994NG61900017.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。