完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2014-12-08T15:37:45Z | - |
dc.date.available | 2014-12-08T15:37:45Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.issn | 1073-7928 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/25959 | - |
dc.identifier.uri | http://dx.doi.org/10.1093/imrn/rnq194 | en_US |
dc.description.abstract | Let p(n) denote the partition function. In this article, we will show that congruences of the form p(ml(k)n+B)= 0 mod m for all n >= 0 exist for all primes m and l satisfying m >= 13 and l l = 2, 3, m, where B is a suitably chosen integer depending on m and l. Here, the integer k depends on the Hecke eigenvalues of a certain invariant subspace of S(m/2-1)(G(0)(576), chi(12)) and can be explicitly computed. More generally, we will show that for each integer i > 0 there exists an integer k such that with a properly chosen B the congruence p(m(i) l(k) n+B) equivalent to 0 mod m(i) holds for all integers n not divisible by l. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Congruences of the Partition Function | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1093/imrn/rnq194 | en_US |
dc.identifier.journal | INTERNATIONAL MATHEMATICS RESEARCH NOTICES | en_US |
dc.citation.issue | 14 | en_US |
dc.citation.spage | 3261 | en_US |
dc.citation.epage | 3288 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000292839100005 | - |
dc.citation.woscount | 6 | - |
顯示於類別: | 期刊論文 |