Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:37:45Z-
dc.date.available2014-12-08T15:37:45Z-
dc.date.issued2011en_US
dc.identifier.issn1073-7928en_US
dc.identifier.urihttp://hdl.handle.net/11536/25959-
dc.identifier.urihttp://dx.doi.org/10.1093/imrn/rnq194en_US
dc.description.abstractLet p(n) denote the partition function. In this article, we will show that congruences of the form p(ml(k)n+B)= 0 mod m for all n >= 0 exist for all primes m and l satisfying m >= 13 and l l = 2, 3, m, where B is a suitably chosen integer depending on m and l. Here, the integer k depends on the Hecke eigenvalues of a certain invariant subspace of S(m/2-1)(G(0)(576), chi(12)) and can be explicitly computed. More generally, we will show that for each integer i > 0 there exists an integer k such that with a properly chosen B the congruence p(m(i) l(k) n+B) equivalent to 0 mod m(i) holds for all integers n not divisible by l.en_US
dc.language.isoen_USen_US
dc.titleCongruences of the Partition Functionen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/imrn/rnq194en_US
dc.identifier.journalINTERNATIONAL MATHEMATICS RESEARCH NOTICESen_US
dc.citation.issue14en_US
dc.citation.spage3261en_US
dc.citation.epage3288en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000292839100005-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000292839100005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.