完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lee, Shih-Huang | en_US |
dc.contributor.author | Chin, Chih-Hao | en_US |
dc.contributor.author | Chen, Wei-Kan | en_US |
dc.contributor.author | Huang, Wen-Jian | en_US |
dc.contributor.author | Hsieh, Chu-Chun | en_US |
dc.date.accessioned | 2014-12-08T15:37:49Z | - |
dc.date.available | 2014-12-08T15:37:49Z | - |
dc.date.issued | 2011-01-01 | en_US |
dc.identifier.issn | 1463-9076 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1039/c0cp02439b | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26005 | - |
dc.description.abstract | We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D) + C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C pi-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Exploring the dynamics of reaction N((2)D) + C(2)H(4) with crossed molecular-beam experiments and quantum-chemical calculations | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1039/c0cp02439b | en_US |
dc.identifier.journal | PHYSICAL CHEMISTRY CHEMICAL PHYSICS | en_US |
dc.citation.volume | 13 | en_US |
dc.citation.issue | 18 | en_US |
dc.citation.spage | 8515 | en_US |
dc.citation.epage | 8525 | en_US |
dc.contributor.department | 應用化學系 | zh_TW |
dc.contributor.department | Department of Applied Chemistry | en_US |
顯示於類別: | 期刊論文 |