完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Por-Shenen_US
dc.contributor.authorFu, Hsin-Chiaen_US
dc.date.accessioned2014-12-08T15:38:07Z-
dc.date.available2014-12-08T15:38:07Z-
dc.date.issued2011-01-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2010.07.030en_US
dc.identifier.urihttp://hdl.handle.net/11536/26152-
dc.description.abstractThis paper proposes new variance enhanced clustering methods to improve the popular K-medoid algorithm by adapting variance information in data clustering. Since measuring similarity between data objects is simpler than mapping data objects to data points in feature space, these pairwise similarity based clustering algorithms can greatly reduce the difficulty in developing clustering based pattern recognition applications. A web-based image clustering system has been developed to demonstrate and show the clustering power and significance of the proposed methods. Synthetic numerical data and real-world image collection are applied to evaluate the performance of the proposed methods on the prototype system. As shown as the web-demonstration, the proposed method, variance enhanced K-medoid model, groups similar images in clusters with various variances according to the distribution of image similarity values. (C) 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectClusteringen_US
dc.subjectK-medoiden_US
dc.subjectData varianceen_US
dc.subjectPolygon modelen_US
dc.subjectImage similarityen_US
dc.titleVariance enhanced K-medoid clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2010.07.030en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume38en_US
dc.citation.issue1en_US
dc.citation.spage764en_US
dc.citation.epage775en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000282607800086-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000282607800086.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。