完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHan, Ming-Fengen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.date.accessioned2014-12-08T15:38:20Z-
dc.date.available2014-12-08T15:38:20Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6588-0en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/26254-
dc.description.abstractA compensatory neurofuzzy system (CNFS) with on-line learning ability is proposed in this paper. The proposed CNFS model uses a compensatory layer to raise the diversity of fuzzy rules by compensatory weights. The compensatory layer can automatically compare with each fuzzy rule and select higher resources for more important fuzzy rule. An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the fuzzy measure to determine the number of fuzzy rules. The parameter learning, based on the gradient descent method, can adjust the shape of the membership function and the weights of the compensatory layer. To demonstrate the capability of the proposed CNFS, it is applied to the Iris, and Wisconsin breast cancer classification datasets from the UCI Repository. Experimental results show that the proposed CNFS for pattern classification can achieve good classification performance.en_US
dc.language.isoen_USen_US
dc.subjectCompensatory NeuroFuzzy System (CNFS)en_US
dc.subjectNeuroFuzzy Systemen_US
dc.subjectCompensationen_US
dc.subjectClassificationen_US
dc.titleA Compensatory NeuroFuzzy System with Online Constructing and Parameter Learningen_US
dc.typeArticleen_US
dc.identifier.journal2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010)en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000287606400084-
顯示於類別:會議論文