Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:38:23Z-
dc.date.available2014-12-08T15:38:23Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6588-0en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/26276-
dc.description.abstractThis paper proposes an Internal/Interconnection Recurrent Type-2 Fuzzy Neural Network (IRT2FNN) for dynamic system identification. The antecedent part of IRT2FNN forms a self and interconnection feedback loop by feeding the past and current firing strength of each rule. The TSK-type consequent part is a linear model of exogenous inputs with interval weights. The initial rule base in the IRT2FNN is empty, and an on-line constructing method is proposed to generate fuzzy rules which flexibly partition the input space. The recurrent structure in the IRT2FNN enable to handle dynamic system identification problems with a priori knowledge of system input and output delay numbers. Simulations on dynamic system identification verify the performance of IRT2FNN with clean and noisy outputs as well.en_US
dc.language.isoen_USen_US
dc.subjectRecurrent neural networken_US
dc.subjectrecurrent fuzzy neural networksen_US
dc.subjecttype-2 fuzzy systemsen_US
dc.subjecton-line fuzzy clusteringen_US
dc.subjectdynamic system identificationen_US
dc.titleAn Internal/Interconnection Recurrent Type-2 Fuzzy Neural Network (IRT2FNN) for Dynamic System Identificationen_US
dc.typeArticleen_US
dc.identifier.journal2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010)en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000287606400111-
Appears in Collections:Conferences Paper