Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Hsiu-Jenen_US
dc.contributor.authorYoung, Kuu-youngen_US
dc.date.accessioned2014-12-08T15:38:24Z-
dc.date.available2014-12-08T15:38:24Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-6588-0en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/26288-
dc.description.abstractThis paper presents a simple and effective approach to govern robot arm motion in real time using upper limb EMG signals. Considering the non-stationary and nonlinear characteristics of the EMG signals, in the design for feature extraction, we introduce the empirical mode decomposition (EMD) to decompose the EMG signals into intrinsic mode functions (IMFs). Each IMF represents different physical characteristic, so that the muscular movement can be recognized. We then integrate it with a so-called initial point detection method previously proposed to establish the mapping between the upper limb EMG signals and corresponding robot arm movements in real time. In addition, for each individual user, we adopt a fuzzy approach to select proper system parameters for motion classification. The experimental results show the feasibility of the proposed approach with accurate motion recognition.en_US
dc.language.isoen_USen_US
dc.subjectElectromyography (EMG)en_US
dc.subjectRobot controlen_US
dc.subjectUpper limb motion classificationen_US
dc.subjectEmpirical mode decompositionen_US
dc.titleRobot Motion Governing Using Upper Limb EMG Signal Based on Empirical Mode Decompositionen_US
dc.typeArticleen_US
dc.identifier.journal2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010)en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000287606400067-
Appears in Collections:Conferences Paper