Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorLi, Chi-Kwongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:38:24Z-
dc.date.available2014-12-08T15:38:24Z-
dc.date.issued2010-12-01en_US
dc.identifier.issn0379-4024en_US
dc.identifier.urihttp://hdl.handle.net/11536/26295-
dc.description.abstractFor any n-by-n complex matrix A and any k, 1 <= k <= n, let Lambda(k)(A) = {lambda is an element of C : X*AX = lambda I(k) for some n-by-k X satisfying X*X = I(k)) be its rank-k numerical range. It is shown that if A is an n-by-n contraction, then Lambda(k)(A) = boolean AND{Lambda(k)(U) : U is an (n + d(A))-by-(n + d(A)) unitary dilation of A}, where d(A) = rank (I(n) - A* A). This extends and refines previous results of Choi and Li on constrained unitary dilations, and a result of Mirman on S(n)-matrices.en_US
dc.language.isoen_USen_US
dc.subjectHigher-rank numerical rangeen_US
dc.subjectunitary dilationen_US
dc.titleHIGHER-RANK NUMERICAL RANGES AND DILATIONSen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF OPERATOR THEORYen_US
dc.citation.volume63en_US
dc.citation.issue1en_US
dc.citation.spage181en_US
dc.citation.epage189en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000277921600009-
dc.citation.woscount9-
Appears in Collections:Articles