Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Li, Chi-Kwong | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:38:24Z | - |
dc.date.available | 2014-12-08T15:38:24Z | - |
dc.date.issued | 2010-12-01 | en_US |
dc.identifier.issn | 0379-4024 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26295 | - |
dc.description.abstract | For any n-by-n complex matrix A and any k, 1 <= k <= n, let Lambda(k)(A) = {lambda is an element of C : X*AX = lambda I(k) for some n-by-k X satisfying X*X = I(k)) be its rank-k numerical range. It is shown that if A is an n-by-n contraction, then Lambda(k)(A) = boolean AND{Lambda(k)(U) : U is an (n + d(A))-by-(n + d(A)) unitary dilation of A}, where d(A) = rank (I(n) - A* A). This extends and refines previous results of Choi and Li on constrained unitary dilations, and a result of Mirman on S(n)-matrices. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Higher-rank numerical range | en_US |
dc.subject | unitary dilation | en_US |
dc.title | HIGHER-RANK NUMERICAL RANGES AND DILATIONS | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF OPERATOR THEORY | en_US |
dc.citation.volume | 63 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 181 | en_US |
dc.citation.epage | 189 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000277921600009 | - |
dc.citation.woscount | 9 | - |
Appears in Collections: | Articles |