Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, SWen_US
dc.contributor.authorChang, CYen_US
dc.contributor.authorLir, JTen_US
dc.contributor.authorLin, TFen_US
dc.date.accessioned2014-12-08T15:38:33Z-
dc.date.available2014-12-08T15:38:33Z-
dc.date.issued2004-09-01en_US
dc.identifier.issn0017-9310en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.05.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/26392-
dc.description.abstractAn experiment combining flow visualization and temperature measurement is carried out here to study the possible stabilization and elimination of the buoyancy driven unstable longitudinal, transverse and mixed vortex flow in mixed convection of air in a bottom heated horizontal flat duct by the top plate heating. The top plate temperature is varied systematically to examine its effects on the spatial and temporal flow structures in the duct. How the top plate temperature and the Reynolds and Rayleigh numbers of the flow affect the vortex flow characteristics is investigated in detail. Specifically the experiment is conducted for the Reynolds number varying from 1 to 50, Rayleigh number from 4000 to 8000 and the non-dimensional top plate temperature from 0 to 1 at an interval of 1/8, covering a wide range of the buoyancy-to-inertia ratio. The results indicate that the top plate heating substantially stabilizes and for some cases even eliminates the longitudinal, transverse, mixed longitudinal and transverse, and irregular vortex flows induced by the buoyancy associated with the heated bottom plate of the duct. At the high top plate temperature even the entire irregular vortex flow can be eliminated and the flow becomes unidirectional in the duct. Obviously the transient velocity and temperature oscillations in the flow are completely suppressed. (C) 2004 Published by Elsevier Ltd.en_US
dc.language.isoen_USen_US
dc.titleStabilization and elimination of transient unstable mixed convective vortex flow of air in a bottom heated horizontal flat duct by top plate heatingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijheatmasstransfer.2004.05.005en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFERen_US
dc.citation.volume47en_US
dc.citation.issue19-20en_US
dc.citation.spage4137en_US
dc.citation.epage4152en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000223414200011-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000223414200011.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.