Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, YC | en_US |
dc.contributor.author | Hsu, YJ | en_US |
dc.date.accessioned | 2014-12-08T15:38:38Z | - |
dc.date.available | 2014-12-08T15:38:38Z | - |
dc.date.issued | 2004-09-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26436 | - |
dc.description.abstract | Let M-2 be a compact Willmore surface in the n-dimensional unit sphere. Denote by phi(ij)(alpha) the tracefree part of the second fundamental form h(ij)(alpha) of M-2, and by H the mean curvature vector of M-2. Let Phi be the square of the length of phi(ij)(alpha) and H = H. We prove that if 0 < Phi < C(1 + (H2)/(8)), where C = 2 when n = 3 and C = (4)/(3) when n greater than or equal to 4, then either Phi = 0 and M-2 is totally umbilic or Phi = C(1 + (H2)/(8)) In the latter case, either n = 3 and M-2 is the Clifford torus or n = 4 and M-2 is the Veronese surface. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Willmore surface | en_US |
dc.subject | Willmore functional | en_US |
dc.subject | totally umbilic | en_US |
dc.subject | sphere | en_US |
dc.title | Willmore surfaces in the unit N-sphere | en_US |
dc.type | Article | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 8 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 467 | en_US |
dc.citation.epage | 476 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000224083800007 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |