完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, YCen_US
dc.contributor.authorHsu, YJen_US
dc.date.accessioned2014-12-08T15:38:38Z-
dc.date.available2014-12-08T15:38:38Z-
dc.date.issued2004-09-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://hdl.handle.net/11536/26436-
dc.description.abstractLet M-2 be a compact Willmore surface in the n-dimensional unit sphere. Denote by phi(ij)(alpha) the tracefree part of the second fundamental form h(ij)(alpha) of M-2, and by H the mean curvature vector of M-2. Let Phi be the square of the length of phi(ij)(alpha) and H = H. We prove that if 0 < Phi < C(1 + (H2)/(8)), where C = 2 when n = 3 and C = (4)/(3) when n greater than or equal to 4, then either Phi = 0 and M-2 is totally umbilic or Phi = C(1 + (H2)/(8)) In the latter case, either n = 3 and M-2 is the Clifford torus or n = 4 and M-2 is the Veronese surface.en_US
dc.language.isoen_USen_US
dc.subjectWillmore surfaceen_US
dc.subjectWillmore functionalen_US
dc.subjecttotally umbilicen_US
dc.subjectsphereen_US
dc.titleWillmore surfaces in the unit N-sphereen_US
dc.typeArticleen_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume8en_US
dc.citation.issue3en_US
dc.citation.spage467en_US
dc.citation.epage476en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000224083800007-
dc.citation.woscount1-
顯示於類別:期刊論文