完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shieh, Min-Zheng | en_US |
dc.contributor.author | Tsai, Shi-Chun | en_US |
dc.date.accessioned | 2014-12-08T15:38:53Z | - |
dc.date.available | 2014-12-08T15:38:53Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.isbn | 978-1-4244-6960-4 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/26632 | - |
dc.identifier.uri | http://dx.doi.org/10.1109/ISIT.2010.5513663 | en_US |
dc.description.abstract | Permutation codes of length n and distance d is a set of permutations on n symbols, where the distance between any two elements in the set is at least d. Subgroup permutation codes are permutation codes with the property that the elements are closed under the operation of composition. In this paper, under the distance metric l(infinity)-norm, we prove that finding the minimum weight codeword for subgroup permutation code is NP-complete. Moreover, we show that it is NP-hard to approximate the minimum weight within the factor 7/6 - epsilon for any epsilon > 0. | en_US |
dc.language.iso | en_US | en_US |
dc.title | On the minimum weight problem of permutation codes under Chebyshev distance | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/ISIT.2010.5513663 | en_US |
dc.identifier.journal | 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY | en_US |
dc.citation.spage | 1183 | en_US |
dc.citation.epage | 1187 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000287512700238 | - |
顯示於類別: | 會議論文 |