完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, YCen_US
dc.contributor.authorLin, SCen_US
dc.contributor.authorLin, CJen_US
dc.contributor.authorHwang, JKen_US
dc.date.accessioned2014-12-08T15:39:00Z-
dc.date.available2014-12-08T15:39:00Z-
dc.date.issued2004-06-01en_US
dc.identifier.issn0887-3585en_US
dc.identifier.urihttp://dx.doi.org/10.1002/prot.20079en_US
dc.identifier.urihttp://hdl.handle.net/11536/26696-
dc.description.abstractThe support vector machine (SVM) method is used to predict the bonding states of cysteines. Besides using local descriptors such as the local sequences, we include global information, such as amino acid compositions and the patterns of the states of cysteines (bonded or nonbonded), or cysteine state sequences, of the proteins. We found that SVM based on local sequences or global amino acid compositions yielded similar prediction accuracies for the data set comprising 4136 cysteine-containing segments extracted from 969 nonhomologous proteins. However, the SVM method based on multiple feature vectors (combining local sequences and global amino acid compositions) significantly improves the prediction accuracy, from 80% to 86%. If coupled with cysteine state sequences, SVM based on multiple feature vectors yields 90% in overall prediction accuracy and a 0.77 Matthews correlation coefficient, around 10% and 22% higher than the corresponding values obtained by SVM based on local sequence information. (C) 2004Wiley-Liss, Inc.en_US
dc.language.isoen_USen_US
dc.subjectsupport vector machinesen_US
dc.subjectdisulfide bondsen_US
dc.subjectcysteine state sequencesen_US
dc.subjectmultiple feature vectorsen_US
dc.titlePrediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequencesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/prot.20079en_US
dc.identifier.journalPROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICSen_US
dc.citation.volume55en_US
dc.citation.issue4en_US
dc.citation.spage1036en_US
dc.citation.epage1042en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000221802000024-
dc.citation.woscount38-
顯示於類別:期刊論文


文件中的檔案:

  1. 000221802000024.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。