Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | CHEN, YJ | en_US |
| dc.contributor.author | CHANG, CC | en_US |
| dc.contributor.author | YANG, WP | en_US |
| dc.date.accessioned | 2014-12-08T15:04:10Z | - |
| dc.date.available | 2014-12-08T15:04:10Z | - |
| dc.date.issued | 1994 | en_US |
| dc.identifier.issn | 0020-7160 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/2670 | - |
| dc.identifier.uri | http://dx.doi.org/10.1080/00207169408804350 | en_US |
| dc.description.abstract | The concept of the shortest vectorial addition chains is considered to be an optimal approach for computing a monomial Pi(i=1)(p)x(i)(ni) with the minimum number of multiplications. In this paper, some properties of the shortest vectorial addition chain are presented. Furthermore, an approach to achieve the shortest chains in some special cases is proposed. The correctness of these properties and the optimality of this approach are also shown. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | CASCADE EXPONENTIATION | en_US |
| dc.subject | MONOMIAL EVALUATION | en_US |
| dc.subject | ADDITION CHAIN | en_US |
| dc.subject | ADDITION SEQUENCE | en_US |
| dc.subject | VECTORIAL ADDITION CHAIN | en_US |
| dc.subject | THE SHORTEST VECTORIAL ADDITION CHAIN | en_US |
| dc.title | SOME PROPERTIES OF VECTORIAL ADDITION CHAINS | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1080/00207169408804350 | en_US |
| dc.identifier.journal | INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS | en_US |
| dc.citation.volume | 54 | en_US |
| dc.citation.issue | 3-4 | en_US |
| dc.citation.spage | 185 | en_US |
| dc.citation.epage | 196 | en_US |
| dc.contributor.department | 資訊工程學系 | zh_TW |
| dc.contributor.department | Department of Computer Science | en_US |
| dc.identifier.wosnumber | WOS:A1994QV10300005 | - |
| dc.citation.woscount | 6 | - |
| Appears in Collections: | Articles | |

