完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCHEN, YJen_US
dc.contributor.authorCHANG, CCen_US
dc.contributor.authorYANG, WPen_US
dc.date.accessioned2014-12-08T15:04:10Z-
dc.date.available2014-12-08T15:04:10Z-
dc.date.issued1994en_US
dc.identifier.issn0020-7160en_US
dc.identifier.urihttp://hdl.handle.net/11536/2670-
dc.identifier.urihttp://dx.doi.org/10.1080/00207169408804350en_US
dc.description.abstractThe concept of the shortest vectorial addition chains is considered to be an optimal approach for computing a monomial Pi(i=1)(p)x(i)(ni) with the minimum number of multiplications. In this paper, some properties of the shortest vectorial addition chain are presented. Furthermore, an approach to achieve the shortest chains in some special cases is proposed. The correctness of these properties and the optimality of this approach are also shown.en_US
dc.language.isoen_USen_US
dc.subjectCASCADE EXPONENTIATIONen_US
dc.subjectMONOMIAL EVALUATIONen_US
dc.subjectADDITION CHAINen_US
dc.subjectADDITION SEQUENCEen_US
dc.subjectVECTORIAL ADDITION CHAINen_US
dc.subjectTHE SHORTEST VECTORIAL ADDITION CHAINen_US
dc.titleSOME PROPERTIES OF VECTORIAL ADDITION CHAINSen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207169408804350en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF COMPUTER MATHEMATICSen_US
dc.citation.volume54en_US
dc.citation.issue3-4en_US
dc.citation.spage185en_US
dc.citation.epage196en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1994QV10300005-
dc.citation.woscount6-
顯示於類別:期刊論文