Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, PLen_US
dc.contributor.authorKuo, CTen_US
dc.contributor.authorPan, FMen_US
dc.contributor.authorTsai, TGen_US
dc.date.accessioned2014-12-08T15:39:11Z-
dc.date.available2014-12-08T15:39:11Z-
dc.date.issued2004-05-10en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.1738941en_US
dc.identifier.urihttp://hdl.handle.net/11536/26780-
dc.description.abstractOrdered nanodot arrays of titanium oxide (TiO2) were prepared from an epitaxial Al/TiN bilayered film on a sapphire substrate by electrochemical anodization of the TiN layer using a nanoporous anodic aluminum oxide (AAO) film as the template. The nanodots with an average diameter of about 60 nm can faithfully duplicate the size, shape, and hexagonal pore pattern of the AAO nanopores. The phase development of the isolated TiO2 nanodots is very much different from TiO2 thin films and powders. After high temperature annealing, the nanodots are polycrystalline and consist of a mixed phase of anatase and rutile instead of single rutile phase. We expect that TiO2 nanodots with a single phase of anatase can be realized as long as the size of the nanodots is smaller than the critical nuclei size for rutile formation. (C) 2004 American Institute of Physics.en_US
dc.language.isoen_USen_US
dc.titlePreparation and phase transformation of highly ordered TiO2 nanodot arrays on sapphire substratesen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.1738941en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume84en_US
dc.citation.issue19en_US
dc.citation.spage3888en_US
dc.citation.epage3890en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000221210100056-
dc.citation.woscount34-
Appears in Collections:Articles


Files in This Item:

  1. 000221210100056.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.