完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, CTen_US
dc.contributor.authorChang, CLen_US
dc.contributor.authorCheng, WCen_US
dc.date.accessioned2014-12-08T15:39:14Z-
dc.date.available2014-12-08T15:39:14Z-
dc.date.issued2004-05-01en_US
dc.identifier.issn1057-7122en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSI.2004.827622en_US
dc.identifier.urihttp://hdl.handle.net/11536/26799-
dc.description.abstractIt is widely accepted that using a set of cellular neural networks (CNNs) in parallel can achieve higher level information processing and reasoning functions either from application or biologics points of views. Such an integrated CNN system can solve more complex intelligent problems. In this paper, we propose a novel framework for automatically constructing a multiple-CNN integrated neural system in the form of a recurrent fuzzy neural network. This system, called recurrent fuzzy CNN (RFCNN), can automatically learn its proper network structure and parameters simultaneously. The structure learning includes the fuzzy division of the problem domain and the creation of fuzzy rules and CNNs. The parameter learning includes the tuning of fuzzy membership functions and CNN templates. In the RFCNN, each learned fuzzy rule corresponds to a CNN. Hence, each CNN takes care of a fuzzily separated problem region, and the functions of all CNNs are integrated through the fuzzy inference mechanism. A new online adaptive independent component analysis mixture-model technique is proposed for the structure learning of RFCNN, and the ordered-derivative calculus is applied to derive the recurrent learning rules of CNN templates in the parameter-learning phase. The proposed RFCNN provides a solution to the current dilemma on the decision of templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. The capability of the proposed RFCNN is demonstrated on the real-world defect inspection problems. Experimental results show that the proposed scheme is effective and promising.en_US
dc.language.isoen_USen_US
dc.subjectcellular neural networks (CNN) template designen_US
dc.subjectdefect inspectionen_US
dc.subjectfuzzy clusteringen_US
dc.subjectfuzzy neural network (FNN)en_US
dc.subjectindependent component analysis (ICA)en_US
dc.subjectordered derivativeen_US
dc.subjectrecurrent neural networken_US
dc.titleA recurrent fuzzy cellular neural network system with automatic structure and template learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSI.2004.827622en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERSen_US
dc.citation.volume51en_US
dc.citation.issue5en_US
dc.citation.spage1024en_US
dc.citation.epage1035en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000221313900016-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000221313900016.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。